A quinhydrone-type 2 : 1 acceptor–donor charge transfer complex obtained *via* a solvent-free reaction \dagger

Marcel Bouvet,* Bernard Malézieux and Patrick Herson

Received (in Cambridge, UK) 10th January 2006, Accepted 17th February 2006 First published as an Advance Article on the web 8th March 2006 DOI: 10.1039/b600345a

A 2 : 1 2-methoxybenzoquinone $(BQ_{OMe})-$ hydroquinone $(H₂Q)$ complex (5), obtained as single crystals by a solventfree reaction, combines dipolar and $\pi-\pi$ interactions, as well as hydrogen bonding.

Non-covalent interactions, namely hydrogen bonding, halogen bonding, $\pi-\pi$ and dipole–dipole interactions stabilize numerous organic, organometallic and biological molecular networks.^{1–6} Considering the example of quinhydrone, a well-known charge transfer complex between benzoquinone (BO) and H₂O, $\pi-\pi$ interactions exist inside the donor–acceptor stacks, whilst infinite molecular chains form through hydrogen bonds between neighboring stacks.^{7,8} Elsewhere, charge transfer complexes of the quinhydrone-type have been involved in recognition processes⁹ and recently used to self-organize calixarenes.10 In unsymmetrically-substituted quinhydrones, interconversion by hydrogen transfer was shown to occur between the two components of the complex in the solid state, $11-13$ but only one crystal structure was reported.¹² Concerning the association of BQ_{OMe} and H₂Q, a charge transfer band has been observed, but without any information about the stoichiometry of the interaction.¹⁴

In this paper we describe a new synthetic route to obtain single crystals of quinhydrones through a solvent-free reaction. The starting materials, 2-methoxyhydroquinone H_2Q_{OMe} (1) and BQ (2), undergo a redox reaction to lead to BQ_{OMe} (3) and $H₂Q$ (4) (Scheme 1), which evolve to give 5{ as black needles (space group: P-1).§ The asymmetric unit is composed of one molecule of 3 and half a molecule of 4 (Fig. 1). Hydroquinone lies at an inversion center, so compound 5 has to be considered as a 2 : 1 acceptor– donor (AAD) complex. The molecules arrange in columns of repeating AAD sequences parallel to the $({\vec c} - {\vec b})$ vector, and make

Laboratoire de Chimie Inorganique et Matériaux Moléculaires, Université Pierre et Marie Curie - Paris 6, CNRS - UMR 7071, 4 Place Jussieu, Case Courrier 42, 75252 Paris Cedex 05, France. E-mail: marcel.bouvet@espci.fr; Fax: (+33) 1 44 27 38 41; Tel: (+33) 1 44 27 30 83

{ Electronic Supplementary Information (ESI) available: Optical absorption spectra of a thin film of 1 in PMMA exposed to 2, (a) as a function of time and (b) difference from the starting film showing the charge transfer band. See DOI: 10.1039/b600345a

an angle of 30° to this axis. The distance between the molecular planes of the A and D components in a column varies between 3.09 and 3.17 Å (mean value: 3.13 Å), which indicates a strong $\pi-\pi$ interaction (Fig. 1). This A–D π -stacking distance is comparable to that observed in the unsubstituted quinhydrone (3.2 Å) .⁸ We note however that A and D are tilted by 2° . Further, the distance between two neighboring A moieties (3.35 Å) is typical of a $\pi-\pi$ interaction, comparable to the intermolecular distance observed in pure 3.¹⁵ The AA pairs, in which each molecule corresponds to its twin by an inversion center, are stabilized by a dipole–dipole interaction. The dipole moment of 3 has been calculated to be 0.81 Debye (MNDO).¹⁵ Hydrogen bonds exist between H_2Q and BQ_{OMe} molecules belonging to adjacent columns, defining planes parallel to the (011) plane; $d_{O3-O4'} = 2.717(2)$ Å, angle O3–H1′– $O4' = 164^{\circ}$ (Fig. 1). These hydrogen bonds involve the carbonyl group in the meta position with respect to the methoxy group. The interatomic distances of sub-units 3 in 5 are slightly different from those measured in single crystals of free 3 (space group $P2_1/c$).¹⁵ Due to the existence of hydrogen bonding involving O3, the difference between the two carbonyl distances $(C4-O3 - C1-O1)$ suffers from a slight increase from $0.005(5)$ to $0.027(5)$ Å, while the C–OH distance is not significantly shortened, compared to pure 4.

For sub-unit 4, we compared data measured in 5 with the mean value obtained from the three independent molecules constituting

Fig. 1 X-Ray crystal structure of 5: (a) ORTEP (30% probability level) representation of the asymmetric unit, including atomic numbering and bond lengths in \hat{A} ; the prime (\hat{B}) symbol indicates that these atoms are at equivalent positions $(1 - x, 2 - y, -z)$. (b) View of an AAD triad (100%) van der Waals radii). (c) A schematic view of the structure with interplanar distances in \AA (projection on the (011) plane, segments indicate the main axis of molecules and arrows the direction of the dipolar moment of A).

Fig. 2 NMR spectra of 3 in CD₃CN.

the asymmetric unit in 4, obtained as single crystals by sublimation under vacuum (α -form). \P The C–C distances measured in 5 are $0.007(4)$ Å longer than those measured in free 4 (mean values of all the C–C bonds). In spite of the marginal significance of this value, one can note that the difference is 0.014 Å when going from 4 to the BQ/H₂Q quinhydrone, both determined at RT.^{8,16}

The 1 H NMR spectrum of an equimolar mixture of 1 and 2 in $CD₃CN$ indicates that the reaction depicted in Scheme 1 is quantitative after a few minutes. The spectrum of crystals of 5 dissolved in CD₃CN confirms that 3 and 4 are in a ratio of 2 : 1. The peaks attributable to 3 were identified from their different coupling constants and homogeneous decoupling experiments. In contrast with previously published works, the signal at δ 6.71 is not a singlet, $17,18$ but remains as two doublets (Fig. 2). The methoxy group does not appear as a singlet, but as a doublet. Irradiation at δ 3.8 induces a modification of the peak at δ 6.0, which then appears as a doublet of doublets, without any modification of the other signals. Reversibly, irradiation at δ 6.0 transforms the signal at δ 3.8 into a singlet. This means a coupling phenomenon exists between protons of the methoxy group and H5, which could also be observed in pure CDCl₃ and when the solution was diluted ten times in CD_3CN . No variation of chemical shift was observed between pure $3\parallel$ and mixtures of 3 and 4 in CD₃CN, indicating no intermolecular interaction between the acceptor and donor components in that solvent.

In acetonitrile, reaction occurs rapidly between 1 and 2 at room temperature, but the absorption spectra of equimolar mixtures of 1 and 2 correspond to the superimposition of the individual spectra of 3 and 4 (Fig. 3), indicating that products 3 and 4 do not interact.

The absorption spectrum of 5, obtained in the solid state from a KBr pellet, shows a strong and broad absorption band centered at

Fig. 3 Absorption spectrum of an equimolar mixture of 1 and 2 in acetonitrile (dotted line), and in the solid state (KBr pellet) (solid line).

575 nm (Fig. 3). Films are violet in color. Solid mixtures of 1 and 2, and of 3 and 4 show the same spectra as 5, indicating that the redox reaction occurs rapidly (in the range of minutes) at room temperature.

We also prepared films from acetonitrile solutions of 1 and poly(methyl metacrylate) (PMMA), which after exposure to 2 at RT exhibited the same charge transfer band. We are now applying the same synthetic route to other more elaborate molecules.

We would like to thank E. S. P. C. I. - Paris and UPMC for supporting this work. Dr. R. Thouvenot and Dr. J. Canny (UPMC) are gratefully acknowledged for NMR decoupling experiments.

Notes and references

{ Synthesis of compound 5: A Schlenk tube containing a mixture of 1 (50 mg, 0.35 mmol) and 2 (50 mg, 0.46 mmol) was purged under argon, evacuated under a primary vacuum and then closed. The tube was heated in a home made vertical oven from room temperature to 100 °C at a heating rate of 0.1° min⁻¹, then maintained at 100 °C for 13 h. 2 cm long black needles were formed 2 cm above the oven. 5: m.p.: 136 $^{\circ}$ C (dec.); IR (KBr): 1677 and 1640 (s) (C=O) cm⁻¹; UV-vis: λ_{max} (KBr) 575 nm; ¹H NMR of dissolved crystals (300 MHz, CD₃CN): δ = 3.81 (d, J_{OCH-5} = 0.4 Hz, 3 H, OCH₃), 6.01 (ddq, $J_{5-6} = 1.9$ Hz, $J_{5-3} = 0.4$ Hz, J_{5-9} C_{H₃} = 0.4 Hz, 2 H, H₅), 6.46 (br s, 2 H, OH), 6.70 (s, 4 H, ArH), 6.705 (d, J_{5-6} = 1.9 Hz, 2 H, H₆) and 6.71 (d, J_{3-5} = 0.4 Hz, 2 H, H₃); ¹³C NMR (75.47 MHz, CD₃CN): $\delta = 57.2$ (OCH₃), 108.7 (C3), 116.9 (CH, H2Q), 135.7 and 138.0 (C5 and C6), 151.1 (COH, H2Q), 160.1 (C2), and 183.0 and 189.0 (C1 and C4). Anal. calc. for $C_{20}H_{18}O_8$: C, 62.18; H, 4.70. Found: C, 61.54; H, 4.92%.

§ Crystal data for 5: $C_{20}H_{18}O_8$, $M = 386.36$, triclinic, P-1, $a = 6.6793$ (14), $b = 8.117(2), c = 9.238(2)$ Å, $\alpha = 69.157(14), \beta = 69.931(19), \gamma = 81.34(2)^\circ$, $V = 439.42$ (19) Å³, $Z = 1$, $D_c = 1.46$ g cm⁻³. Measured on a KAPPACCD-Enraf Nonius diffractometer: λ (Mo-K_α) = 0.71073 Å, μ (Mo- K_{α}) = 1.14 cm⁻¹, 8218 reflections (*T* = 200 K, 2 < θ <32°). Number of independent data collected: 2825; number of independent data used for refinement: 1387 $(F_0)^2 > 1.5 \sigma(F_0)^2$, merging $R = 0.034$, $R = \Sigma || F_0 | - |F_c|$ $||/E||F_0 = 0.0578$, $Rw^* = [\Sigma w (||F_0|| - ||F_c||)^2 / \Sigma w F_0^2]^{1/2} = 0.0597$, -0.297 $< \Delta \rho < 0.424$. CCDC 294809. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b600345a

 $\text{``Crystal data for 4 at 200 K: } R-3, a = b = 38.567, c = 5.6650 \text{ Å} \text{ (a-form,)}$ lit.¹⁶ at 300 K, $a = b = 38.46$, $c = 5.650$ Å), $\alpha = \beta = 90$, $\gamma = 120^{\circ}$, and $Z = 18$. I Compound 3 was synthesized from 1 (130 mg, 0.93 mmol) and 2 (100 mg, 0.92 mmol) in CH₃CN and purified on silica gel (eluent: CH₂Cl₂). Yield = 70%. 3: m.p.: 136 °C (dec.) (lit.¹⁵ 134 °C); IR (KBr): 1679 (s) and 1647 (s) (C=O) cm⁻¹; UV-vis: λ_{max} (CH₃CN) 252 nm (log ε = 4.0) and 357 nm (log $\epsilon = 3.2$); ¹H NMR (300 MHz, CD₃CN): $\delta = 3.81$ (d, $J_{\text{OCH}_3-5} = 0.4$ Hz, 3 H, OCH₃), 6.01 (ddq, J_{5-6} = 1.9 Hz, J_{5-3} = 0.4 Hz, J_{5-9CH_3} = 0.4 Hz, 1 H, H₅), 6.705 (d, $J_{5-6} = 1.9$ Hz, 1 H, H₆) and 6.71 (d, $J_{3-5} = 0.4$ Hz, 1 H, H₃).

- 1 G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311.
- 2 M. C. T. Fyfe and J. F. Stoddart, Acc. Chem. Res., 1997, 30, 393.
- 3 P. Metrangolo and G. Resnati, Chem.–Eur. J., 2001, 2511.
- 4 M. Oh, G. B. Carpenter and D. A. Sweigart, Organometallics, 2002, 21, 1290.
- 5 J. Moussa, C. Guyard-Duhayon, P. Herson, H. Amouri, M. N. Rager and A. Jutand, Organometallics, 2004, 23, 6231.
- 6 J. Regeimbal, S. Gleiter, B. L. Trumpower, C.-A. Yu, M. Diwakar, D. P. Ballou and J. C. A. Bardwell, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 13779.
- 7 T. Sakurai, Acta Crystallogr., 1965, 19, 320.
- 8 T. Sakurai, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1968, 24, 403.
- 9 F. D'Souza and G. R. Deviprasad, J. Org. Chem., 2001, 66, 4601.
- 10 S. Meddeb-Limem, B. Malézieux, S. Besbes-Hentati, H. Said, P. Herson, J.-C. Blais and M. Bouvet, J. Phys. Org. Chem., 2005, 18, 1176.
- 11 G. R. Desiraju, D. Y. Curtin and I. C. Paul, J. Org. Chem., 1977, 42, 4071.
- 12 A. O. Patil, D. Y. Curtin and I. C. Paul, J. Am. Chem. Soc., 1984, 106, 4010.
- 13 A. O. Patil, D. Y. Curtin and I. C. Paul, J. Am. Chem. Soc., 1984, 106, 348.
- 16 S. C. Wallwork and H. M. Powell, J. Chem. Soc., Perkin Trans. 2, 1980, 641.
- 14 K. K. Kalninsh, J. Chem. Soc., Perkin Trans. 2, 1984, 80, 1529.
- 15 E. M. D. Keegstra, A. L. Spek, J. W. Zwikker and L. W. Jenneskens, J. Chem. Soc., Chem. Commun., 1994, 1633.
- 17 J. M. Saa, A. llobera, A. Garcia-Raso, A. Costa and P. M. Deya, J. Org. Chem., 1988, 53, 4263.
- 18 T. Ling, E. Poupon, E. J. Rueden, S. H. Kim and E. A. Theodorakis, J. Am. Chem. Soc., 2002, 124, 12261.

Chemical Technology

Chemical Technology

A well-received news supplement showcasing the latest developments in applied and technological aspects of the chemical sciences

Free online and in print issues of selected RSC journals!*

- Application Highlights newsworthy articles and significant technological advances
- Essential Elements latest developments from RSC publications
- Free access to the original research paper from every online article

*A separately issued print subscription is also available

RSC Publishing

www.rsc.org/chemicaltechnology